RECONSTRUCTION OF A REALISTIC RAINFALL FIELD:

AN APPLICATION TO AN EXTREME EVENT IN ITALIAN PRE-ALPS
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Real Terrain h(x) = Adjusted Terrain with BL h(x)

At regional scale, the position of air masses in [1] show a low-pressure centred on western »0 - south Thunderstorm Path across Orobie Mountain Range North
France. This configuration was responsible of the warm and humid air advection coming from 2000
Mediterranean Sea in the direction of the Alps. The temporal persistency of heavy rainfalls was
caused by the stationarity behaviour of the air masses. That humid airflow was also sustained
by the presence of intense jet streams as reported in [2].
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We tested the Linear Upslope Model designed for estimating rainfall records in orographic
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