

Discharge response to rainfall in the Ruzzo springs system in the Gran Sasso d'Italia aquifer: preliminary results by applying cross-correlation analysis

Colaiuda V.^{1,2}, Lombardi A.¹, Tuccella P.^{1,2}, Cimini D.^{1,3}, De Iuliis G.⁴, Marzano F.S.^{1,5}, Redaelli G.^{1,2}, Raparelli E.^{1,5} and Tomassetti B.¹

INTRODUCTION

The Ruzzo system is composed by different springs ranging from 925 to 1620 m a.s.l., in the Northern boundary of the Gran Sasso aquifer. The estimated mean annual discharge is 0.69 m³/s. They are mainly fed by the Corno Grande and Campo Imperatore sub-units [1,2,3].

DATASET

										Р	RF	TC	ΓΡΙ	ТА	TT		J				
Signal analy continuous data.	ysis se Intei	req ries rpol	luire S Iatio	es of on	Can	npotosto)	1988 1999 2010	1989 2000 2011	1990 2001 2012	1991 2002 2013	1992 2003 2014	1993 2004 2015	1994 2005 2016	1995 2006 2017	1996 2007 2018	1997 2008 2019	1998 2009 2020			「「「「「「」」」
algorithms r to fill in pos	nay ssibl	be e h	use nole	ed es,	Piet	racamel	а	1988 1999 2010	1989 2000 2011	1990 2001 2012	1991 2002 2013	1992 2003 2014	1993 2004 2015	1994 2005 2016	1995 2006 2017	1996 2007 2018	1997 2008 2019	1998 2009 2020			のないのである
but their should be	ap con	plic fine	atio d	on to	Fan	o a Corn	10	1988 1999 2010	1989 2000 2011	1990 2001 2012	1991 2002 2013	1992 2003 2014	1993 2004 2015	1994 2005 2016	1995 2006 2017	1996 2007 2018	1997 2008 2019	1998 2009 2020	The second	Rieti	
isolated Therefore, <u>i</u> ensure the	t is co	no- vit nti	dat al nui	a. to tv	Ass	ergi		1988 1999 2010	1989 2000 2011	1990 2001 2012	1991 2002 2013	1992 2003 2014	1993 2004 2015	1994 2005 2016	1995 2006 2017	1996 2007 2018	1997 2008 2019	1998 2009 2020			A CALLER AND
of observer better asse	vatio	o <mark>ns</mark> cli	, mat	to tic	Caste	el Del M	onte	1988 1999 2010	1989 2000 2011	1990 2001 2012	1991 2002 2013	1992 2003 2014	1993 2004 2015	1994 2005 2016	1995 2006 2017	2007 2018	1997 2008 2019	1998 2009 2020			A State of the second
behaviour stationary sy	in /ster	a n.	no	n-	Baris	ciano		1999 2010	2000 2011	2001 2012	2002 2013	2003 2014	2004 2015	2005 2016	2006 2017	2007 2018	2008 2019	2009 2020			
															L	DIS	CF		K GI	Ð	
Vacelliera Alta	1986 *	1987 *	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	200	0 200	01 200	2003	2004	2005	
Vacelliera Bassa	*	*																			
Mescatore Cellino																					
Mescatore Teramo																					
Traforo Istantanea																					
Traforo Teramo	1986	<u> </u>								19	996										
				Al	l data	avai	ilable	;		1-3	mor	oths r	nisse	d			1-11 ı	nonth	s mis:	sed	
					The	m ڊ	ore	ar	e th	ne k	hvd	rol	naid		var	riah		to	corr	elat	•
									U II		TyC		Jgit		vai	iun					

Fourier transform: : decomposes a signal function represented in a time domain (timeseries) into its characteristic sinusoidal components in the complex field (amplitudes, phases and frequencies.). The absolute value of the transform is the original frequency value of the original timeseries, while the complex argument represent the phase offset of predominant sinusoidal functions that compose the signal. Useful for stationary signals, with many limitation for natural signals[4].

Empirical mode decomposition: decomposes a signal x(t) into intrinsic **mode** functions (IMFs) and residual in an iterative process. Ita is an empirical, direct and adaptive method to analyse non -linear trends [5]

Detrended cross correlation: This method is designed to investigate power-law cross correlations between different simultaneously recorded time series in the presence of nonstationarity [6]. **Detrended Partial Cross Correlation:** applicable in a complex system where more than one variable affect the signal behaviour. It allows to estimate a third-variable influence on the correlation between two variables. Also, the Temporal evolution of such influences can be estimated [7].

¹CETEMPS, Center of Excellence, University of L'Aquila; ²Dept. Of Physical and Chemical Sciences, University of L'Aquila; ³CNR-IMAA; (4) Ruzzo Reti S.p.A.; (5) University of Rome "La Sapienza" RESULTS

	IMF1	IME2	IME3	IMF4
		VACELLIERE BASSA		
Central frequency (cycles, months)	0.167	0.078	0.025	0.006
Central period (months)	6	12.9	39.4	156.4
		VACELLIERE ALTA		
Central frequency (cycles, months)	0.142	0.059	0.025	0.014
Central period (months)	7.1	17.1	39.5	74.0
		TRAFORO ISTANTANEA		
Central frequency (cycles, months)	0.132	0.077	0.013	0.012
Central period (months)	7.6	13.0	73.0	83.4
		MESCATORE TERAMO		
Central frequency (cycles, months)	0.174	0.088	0.032	0.012
Central period (months)	5.7	13.4	32.1	103.5
		MESCATORE CELLINO		
Central frequency (cycles, months)	0.188	0.080	0.039	0.012
Central period (months)	5.3	11.3	31.1	80.5
		PRECIPITATION		
Central frequency (cycles, months)	0.186	0.1093	0.0318	0.0132
Central period (months)	5.3	9.1	31.4	76.0
		NAO		
Central frequency (cycles, months)	0.182	0.130	0.055	0.0167
Central period (months)	5.5	7.7	18.3	60.0

	F1	F2	F3					
VACELLIERE BASSA								
Central frequency (cycles, months)	0.17	0.084	0.019					
Central period (months)	6	12.9	52.6					
		VACELLIERE ALTA						
Central frequency (cycles, months)	0.17	0.084	0.013					
Central period (months)	6	12.9	76.9					
TRAFORO ISTANTANEA								
Central frequency (cycles, months)	0.084	0.021	0.014					
Central period (months)	12.9	47.6	71.4					
MESCATORE TERAMO								
Central frequency (cycles, months)	0.17	0.084	0.013					
Central period (months)	6	12.9	76.9					
	ME	ESCATORE CELLINO						
Central frequency (cycles, months)	0.17	0.084						
Central period (months)	6	12.9						
PRECIPITATION								
Central frequency (cycles, months)	0.17	0.02	0.012					
Central period (months)	6	50.0	83.3					
NAO								
Central frequency (cycles, months)	0.18	0.084	0.032					
Central period (months)	5.6	12.9	31.3					

Fourier dominant transform computes frequencies considering the signal as stationary. Complex, nonstationary signals may be decomposed in modl functions where frequency and amplitude are not fixed quantities in the time. Correlation with two non-stationary variables (i.e. discharge and precipitation) may occur at different time – scales and with lag-times that are not fixed, but falls into a «window» of lag times. This is particularly evident if more than a variable influences the signal.

-	
1/1//	156
144	150

REFERENCES

[1] Regione Abruzzo, Piano di Tutela delle Acque [2] Petaccia R. and Rusi R. (2008), Idrogeologia delle sorgenti del Ruzzo (Gran Sasso d'Italia), Giornale di Geologia Applicata, 8(1), 17-28 [3] Di Giacinto, F., Berti M., Carbone L., Caprioli R. Colaiuda V., Lombardi A., Tomassetti B., Tuccella P., De Iuliis P., Pietroleonardi A., Mascilongo G., Di Renzo L., D'Alterio N., Ferri N. (2021), Biological early warning systems: teh experience in the Gran Sasso - Sirente aquifer, Water, in review. [4] Frigo, M., and S. G. Johnson. "FFTW: An Adaptive Software Architecture for the FFT." Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. Vol. 3, 1998, pp. 1381-1384. [5] Huang, Norden E., Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H. Liu. "The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis." *Proceedings of the Royal* Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, no. 1971 (March 8, 1998): 903-95. [6] Podobnik B. and Stanley E.H. (2007), Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series Phys. Rev. Lett. 100(8), 0841020-1/4 [7] Yuan N., Fu Z., Zhang H., Piao L., Xoplaki E. and Luterbacher J. (2015), Detrended partial-crosscorrelation analysis: a new method for analyzing correlations in complex systems, Sci Rep 5, 8143.