Global decreases in favorable thunderstorm environments
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‘bstract )

Thunderstorms affect human lives as they are often associated with significant hazards, such as large hail, flash floods, tornadoes. Under the effect of climate change, global climate model suggests that an increase in
their frequency is likely in the future, warmer, climate. Here we present a global analysis of thunderstorm environments over the past four decades (1979-2019), performed using the new ERA5 reanalysis data. In
comparison to its predecessor (ERA-Interim), ERA5 has improved spatial (0.75° to 0.25°), vertical (60 to 137 levels), and temporal (6-hour to 1-hour) spacing, which allows a better representation of the small scale features
\associated with convective environments. Y

ivective ingredients and proxies )

The analyzed variables are the commonly used convective ingredients such as Convective Available Potential Energy (CAPE), which gives an insight into the potential instability of the atmosphere, 0-6 km wind shear
(BS06), which characterize thunderstorm organization and its severity, and Convective Precipitation (CP) used as a proxy for the initiation of convection. Results show a robust decrease in CAPE and CP, especially
marked in the tropics with an increase in BS06 in the same areas.
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Figure 1: climatology and trends for the (a) 95" percentile of convective available potential energy (CAPE), (b) accumulated convective precipitation, and (c) 50" percentile of 0—6 km vertical wind shear. Statistically significant trends (p-
k value < 0.05), assessed using a non-parametric Mann-Kendall two-tailed p-value at the 0.05 threshold, are marked with ‘X’ symbols. )
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Figure 2: As in Fig. 1 but with the application of a land-surface mask and B R e GRSy B R GRS REANE I IS R U R
showing the combined frequency proxy of (a) thunderstorm environments, Figure 3: Trend values of variables denoting change per decades for selected
\ and (b) severe thunderstorm environments. J regions around the globe. Values in the brackets indicate p-values. J L p
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