Novel geopolymeric support for microfiltration membranes applied in wastewater treatment

<u>A. Filipponi</u>, S. Bandini, G. Masi, M.C Bignozzi

Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, via Terracini 28, 40131 Bologna (Italy)

- support is therefore **hydrophilic**;
- The support obtained has characteristics compatible with **microfiltration**;
- A **minimum pressure** is required to have flow through the support.

Future studies are ongoing to develop geopolymer selective layers by dip y = 31539x - **621** GP_2MPa GP_5MPa 15000 - \star **coating** to be applied on geopolymer supports. $R^2 = 0.995$ GP_2MPa_ET100 GP_5MPa_ET100 60 GP_2MPa_ET200 GP_5MPa_ET200 6000 / = 13937x - **758** - 400 $\mathbf{A}^2 = 0.995$ $R^2 = 0.999$ - 00001 (L/h.m²) (L/h.m²) distribution of the Pore size y = 17673x - **1178** - 300 geopolymeric selective layer that 4000 (**1**) 200 [p/ $R^2 = 0.998$ will be deposited by dip coating y = 20577x + **95 _**> **_**> above the support in order to $R^2 = 0.998$ 5000 -obtain asymmetric an 2000 ⁻ = 10302x - **534** microfiltration membrane. 100 $R^2 = 0.999$ 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.5 0.1 0.2 0.3 0.4 0.01 100 0.1 10 ΔP (bar) Pore size (µm) ΔP (bar) The asymmetric membrane consisting of the support and the selective layer will be used for the purification of wastewater and the separation of oil/water Increasing the ethanol concentration in the solution leads to a decrease in permeability, highlighting the emulsions. hydrophilicity of the material.

Permeability to water-ethanol solutions

0.6