Instituto MCEa nanociencia

13 x 13 1830

13 x 13 x 304

Phase-controlled synthesis of MoTe₂ on Graphene/Ir(111)

J. Ripoll Sau^{1,2}, F. Calleja², P. Casado Aguilar^{1,2}, R. Miranda^{1,2}, A. L. Vázquez de Parga^{1,2}, M. Garnica²

¹ Departamento de Física de la Materia Condensada and IFIMAC, Universidad Autónoma de Madrid, Madrid, Spain. ²Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain.

joan.ripoll@imdea.org

ABSTRACT

In the last decade, transition metal dichalcogenides (TMDs) have demonstrated a great potential in a wide range of areas ranging from opto-electronics, catalysis, energy storage or quantum electronics [1]. They are layered compounds with a MX_2 stoichiometry, where M is a transition metal element and X is a chalcogen element. Interestingly, their electronic properties depend on their thickness and phase, such as the semiconducting hexagonal phase of MoTe₂ showing an indirect bandgap in bulk (2H phase) or a direct bandgap at the monolayer (1H) [2] or its semimetallic distorted octahedral phase (1T') predicted to exhibit quantum spin Hall (QSH) effect in the monolayer regime [3]. Here, we report the growth of 2D islands of MoTe₂ by molecular beam epitaxy (MBE) on graphene grown on the (111) face of an Iridium single crystal. We can control the formation of 1H- and 1T'-phases varying the growth parameters, such as the sample temperature or Mo/Te ratio. Their structural characteristics are studied by means of scanning tunneling microscopy (STM).

INTRODUCTION

RESULTS

EXCELENCIA SEVERO OCHOA 2017 - 2021

R

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

EUROPEAN UNION

Comunidad de Madrid

UAM InterPreside Contensed Matter Preside Cont

<u>JuniorLeader</u>

BECASCAIX